Given relations:
P=3⋅T, $T
eq 0S = Q + 4Q = R + 3$
All five digits P, Q, R, S, T are distinct and each is a single digit 0–9.
Step 1 — Possible values for T and P:
Since P = 3T must be a single digit, T can be 1, 2, or 3:
- T = 1 → P = 3
- T = 2 → P = 6
- T = 3 → P = 9
Step 2 — Possible values for Q, R, S:
From Q = R + 3 and S = Q + 4, Q must satisfy 0≤R≤9 and S≤9.
Thus R=Q−3≥0→Q≥3.
S=Q+4≤9→Q≤5.
So Q∈{3,4,5}, giving:
- Q = 3 → R = 0, S = 7
- Q = 4 → R = 1, S = 8
- Q = 5 → R = 2, S = 9
Step 3 — Test combinations and ensure all digits are distinct:
Try each (T,P) with each (Q,R,S):
T = 1, P = 3:
- Q = 3 → digits {P,Q,R,S,T} = {3,3,0,7,1} → P and Q both 3 → invalid.
- Q = 4 → digits {3,4,1,8,1} → R = 1 and T = 1 → duplicate → invalid.
- Q = 5 → digits {3,5,2,9,1} → all distinct → valid → 35291
T = 2, P = 6:
- Q = 3 → digits {6,3,0,7,2} → all distinct → valid → 63072
- Q = 4 → digits {6,4,1,8,2} → all distinct → valid → 64182
- Q = 5 → digits {6,5,2,9,2} → R = 2 and T = 2 → duplicate → invalid
T = 3, P = 9:
- Q = 3 → digits {9,3,0,7,3} → Q = 3 and T = 3 → duplicate → invalid
- Q = 4 → digits {9,4,1,8,3} → all distinct → valid → 94183
- Q = 5 → digits {9,5,2,9,3} → P = 9 and S = 9 → duplicate → invalid
Step 4 — Count valid numbers:
Valid 5-digit numbers found: 35291, 63072, 64182, 94183 → total = 4.
Therefore the correct choice is (b) 4.