Given:
- PQR − PS = PPT
- Q = 3; digits P, Q, R, S, T are distinct and non-zero; T < 6.
Translate to digits:
PQR = 100P+30+R
PS = 10P+S
PPT = 110P+T
Equation:
(100P+30+R)−(10P+S)=110P+T
⇒90P+30+R−S=110P+T
⇒R−S=20P+T−30 (★)
Range bound:
Since R, S ∈ {1,…,9} and R ≠ S, we must have R − S ∈ {−8, −7, …, −1, 1, …, 8}.
Also T < 6 and T ≠ 3 (distinct from Q), and T ≠ P (distinctness).
Check P values:
- If P ≥ 2, RHS = 20P+T−30≥40+1−30=11>8 ⇒ impossible.
- Hence P = 1.
Then (★) becomes: R − S = (20⋅1+T−30)=T−10.
With T < 6 and T ≠ 1 (distinct from P) and T ≠ 3, possible T ∈ {2, 4, 5}.
For each T, solve R − S = T − 10 with digit/distinctness constraints (R,S ≠ 1,3,T; R,S ∈ {1…9}, R ≠ S):
-
T = 2 ⇒ R − S = −8 ⇒ R = S − 8.
Possible S is 9 ⇒ R = 1, but R = 1 is disallowed (P = 1). ⇒ No solution.
-
T = 4 ⇒ R − S = −6 ⇒ R = S − 6.
S ∈ {7,8,9}:
- S=7 → R=1 (disallowed)
- S=8 → R=2 (allowed) → (R,S) = (2,8)
- S=9 → R=3 (disallowed, Q=3)
-
T = 5 ⇒ R − S = −5 ⇒ R = S − 5.
S ∈ {6,7,8,9}:
- S=6 → R=1 (disallowed)
- S=7 → R=2 (allowed) → (2,7)
- S=8 → R=3 (disallowed)
- S=9 → R=4 (allowed) → (4,9)
Valid (R,S): (2,8), (2,7), (4,9) → 3 pairs.
Therefore, the number of possible values of (R, S) is 3.