We need distinct prime values of k for which there exists a prime p with p2+k<30 and p2+k prime.
Since p2+k<30 and k≥2, we have p2≤27⇒p∈{2,3,5}.
• Case p=2:
p2+k=4+k<30⇒k∈{2,3,5,7,11,13,17,19,23}.
Check primality of 4+k:
6 (×), 7 (✓), 9 (×), 11 (✓), 15 (×), 17 (✓), 21 (×), 23 (✓), 27 (×).
Valid k: {3,7,13,19}.
• Case p=3:
p2+k=9+k<30⇒k∈{2,3,5,7,11,13,17,19}.
9+k is prime only when k=2 (gives 11); for all odd k, 9+k is even > 2 (not prime).
Valid k: {2}.
• Case p=5:
p2+k=25+k<30⇒k∈{2,3}.
27, 28 → neither is prime.
Valid k: ∅.
Distinct k across all cases: {2,3,7,13,19}→5 values.