Given:
Total children = 630
Let x = number of children in the first row
Each subsequent row has 3 fewer children than the previous row
Number of rows = n
Formula for sum of an arithmetic series:
Sn=(n/2)⋅(2x+(n−1)⋅(−3))
Checking possible values of n:
For n = 3:
(3/2)⋅(2x−6)=630
3⋅(2x−6)=1260
6x−18=1260
6x=1278
x=213
For n = 4:
(4/2)⋅(2x−9)=630
2⋅(2x−9)=630
4x−18=630
4x=648
x=162
For n = 5:
(5/2)⋅(2x−12)=630
5⋅(2x−12)=1260
10x−60=1260
10x=1320
x=132
For n = 6:
(6/2)⋅(2x−15)=630
3⋅(2x−15)=630
6x−45=630
6x=675
x=112.5 (not an integer)
Conclusion: 6 rows are not possible.